Emergence of heterogeneous structures in chemical reaction-diffusion networks.
نویسندگان
چکیده
This paper suggests that reaction-diffusion processes, rather than pure topological rules, are responsible for the emergence of heterogeneous structures of complex chemical reaction networks. In such a network, chemical substances react in each node and diffuse between connected nodes. At the same time, each node is able to sense the difference between its own state and the environmental conditions and can rearrange its neighbors via a local rewiring process so as to eliminate the sensed difference. Then, the network, even originally homogeneous, will develop a heterogeneous structure under certain environmental conditions. Such a resultant heterogeneous network may be disassortative, highly clustering, and small world as well. This implies that the reaction-diffusion equilibrium can be statistically controlled by slightly changing the structure of the underlying network. This structure-control mechanism may be especially useful in the situations where some other macroscopic measurements, such as temperature and pressure, are not allowed to be changed through the process.
منابع مشابه
The Contribution of Molecular Diffusion in Silica Coating and Chemical Reaction in the Overall Rate of Reaction of Aluminum Hydroxide with Fluosilicic Acid
The kinetic of the heterogeneous chemical reaction of aluminum hydroxide and fluosilicic acid was studied. It was found that the diffusion of the reactants through the porous silica coating to the aluminum hydroxide surface and the interfacial chemical reaction between the diffusing reactant and aluminum hydroxide platelets control the overall reaction rate. These two phenomena were studied...
متن کاملSpectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface
This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...
متن کاملSIMULATION OF TURING PATTERNS IN A CHEMICAL REACTION-DIFFUSION SYSTEM ERIK MOSEKILDE and OLE JENSEN
The emergence, growth and stabilization of stationary concentration patterns in a chemical reaction-diffusion system are studied by numerical simulationsof the Lengyel-Epstein model. This model represents a key to understanding the recently obtained Turing structures in the chlorite-iodide-malonicacid system.
متن کاملSoybean Oil Transesterification Reactions in the Presence of Mussel Shell: Pseudo-First Order Kinetics
Calcium oxide is one of the appropriate catalysts for biodiesel production. In this study, cheap and compatible with environment catalyst has been used. Mussel shell of Persian Gulf coast is one of the sources of calcium carbonate that is converted to calcium oxide at calcination temperature up to 950°C. Transesterification reaction was carried out at optimum condition of our previous study...
متن کاملEnzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling.
Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion "barriers" arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2010